package enry import ( "math" "gopkg.in/src-d/enry.v1/internal/tokenizer" ) // Classifier is the interface that contains the method Classify which is in charge to assign scores to the possibles candidates. // The scores must order the candidates so as the highest score be the most probably language of the content. The candidates is // a map which can be used to assign weights to languages dynamically. type Classifier interface { Classify(content []byte, candidates map[string]float64) map[string]float64 } type classifier struct { languagesLogProbabilities map[string]float64 tokensLogProbabilities map[string]map[string]float64 tokensTotal float64 } func (c *classifier) Classify(content []byte, candidates map[string]float64) map[string]float64 { if len(content) == 0 { return nil } var languages map[string]float64 if len(candidates) == 0 { languages = c.knownLangs() } else { languages = make(map[string]float64, len(candidates)) for candidate, weight := range candidates { if lang, ok := GetLanguageByAlias(candidate); ok { candidate = lang } languages[candidate] = weight } } tokens := tokenizer.Tokenize(content) scores := make(map[string]float64, len(languages)) for language := range languages { scores[language] = c.tokensLogProbability(tokens, language) + c.languagesLogProbabilities[language] } return scores } func (c *classifier) knownLangs() map[string]float64 { langs := make(map[string]float64, len(c.languagesLogProbabilities)) for lang := range c.languagesLogProbabilities { langs[lang]++ } return langs } func (c *classifier) tokensLogProbability(tokens []string, language string) float64 { var sum float64 for _, token := range tokens { sum += c.tokenProbability(token, language) } return sum } func (c *classifier) tokenProbability(token, language string) float64 { tokenProb, ok := c.tokensLogProbabilities[language][token] if !ok { tokenProb = math.Log(1.000000 / c.tokensTotal) } return tokenProb }